
Towards a Computational Model of Why Some Students Learn Faster than Others

Nan Li, Noboru Matsuda, William W. Cohen, and Kenneth R. Koedinger
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213 USA
nli1@cs.cmu.edu, mazda@cs.cmu.edu, wcohen@cs.cmu.edu, koedinger@cs.cmu.edu

Abstract
Learners that have better metacognition acquire knowledge
faster than others who do not. If we had better models of such
learning, we would be able to build a better metacognitive ed-
ucational system. In this paper, we propose a computational
model that uses a probabilistic context free grammar induc-
tion algorithm yielding metacognitive learning by acquiring
deep features to assist future learning. We discuss the chal-
lenges of integrating this model into a synthetic student, and
possible future studies in using this model to better under-
stand human learning. Preliminary results suggest that both
stronger prior knowledge and a better learning strategy can
speed up the learning process. Some model variations gener-
ate human-like error pattern.

Introduction
Computer-based learning environments are designed to fa-
cilitate learning processes. Traditional systems are usually
not sensitive to individual user differences, and this may hurt
the effectiveness of the systems. Metacognitive educational
systems, on the other hand, provide a much better learning
experience by dynamically adapting to users based on the
“mental states” of the systems. In order to build such sys-
tems, it is important that we are able to model such “mental
state”. It is well known that learners of better metacognition
often acquire knowledge faster than others who do not. If
we had better models of such learning, we would be able to
build a better metacognitive educational system.

Previous work (Chi et al. 1981) showed that one of the
key factors that differentiates experts and novices is that ex-
perts view the world in terms of deep functional features,
while novices see in terms of shallow perceptual features.
The deep features are important prior knowledge in achiev-
ing effective learning. However, how these deep features are
acquired is not clear. A computational model of deep feature
learning that fits student learning data would be a signifi-
cant achievement in theoretical integration within the learn-
ing sciences, and reveal insights on improving metacognitive
systems.

In this paper, we propose a novel approach to modeling
deep feature acquisition through the use of machine learn-
ing techniques. Initially, we assume that the input of the
system is a set of feature recognition records. We propose
a computational model using grammar induction algorithms

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Table 1: Probabilistic context free grammar for coefficient
in algebra

Primitive symbols: −, x;
Non-primitive symbols: Expression, SignedNumber,

V ariable,MinusSign,Number;
Expression→ 1.0, [SignedNumber] V ariable
V ariable→ 1.0, x
SignedNumber → 0.5, MinusSign Number
SignedNumber → 0.5, Number
MinusSign→ 1.0, −

to acquire deep features encoded in these records, and report
preliminary results. Later, we discuss the challenges on in-
tegrating this computational model into a machine learning
agent, SimStudent, (Matsuda et al. 2009), where no fea-
ture recognition records are present. The benefit of this in-
tegration is twofold. First, we could carry out more exten-
sive studies in simulating student learning, which is impor-
tant in building learning sciences. Second, SimStudent suc-
ceeded at learning domains such as algebra, but was given
algebra-specific (strong) background knowledge like coef-
ficient. The extended synthetic student could potentially
learn algebra equation solving without any algebra-specific
(weak) background knowledge. After that, we discuss future
studies on matching the proposed model with real student
data after integration.

A Computational Model of Deep Feature
Learning

The input of the system is a set of feature recognition records
consisting of an original problem (e.g. an expression), and
the feature to be recognized from the problem (e.g. a co-
efficient in the problem). For example, in the algebra do-
main, the feature −3 is recognized from the problem −3x
as the coefficient. Many algebra student errors are caused
by incorrect parsing. A common error made by students is
considering 3 as the coefficient rather than −3. Previous
work (Matsuda et al. 2009) has shown that students with no
prior knowledge of deep features such as “coefficient” learn
slowly.

After a careful examination of the problem, we discov-
ered an interesting insight. The feature learning task can
be viewed as a grammar induction problem. As shown in



3 x

MinusSign Number

SignedNumber

Expression

Variable

3 x

MinusSign

Number

S
1

Expression

Variable

Figure 1: Correct and incorrect parse trees for −3x.

Table 1, it is clear that equations can be formulated as a con-
text free grammar. The parse structure of −3x based on the
grammar is shown at the left side of Figure 1. More inter-
estingly, the perspective of viewing feature learning tasks as
grammar induction problems also explains the cause of stu-
dent errors, which is incorrect parsing of the input as demon-
strated at the right side of Figure 1. To build our learning
model based on this observation, we extended the learn-
ing algorithm proposed by Li et al. (2009), since it acquires
PCFG from observation sequences without any prior struc-
tural knowledge. The system consists of two parts, a greedy
structure hypothesizer, which creates non-primitive symbols
and associated reduction rules as needed to cover all the
training examples, and a Viterbi training step, which iter-
atively refines the probabilities of the reduction rules. More
details are described in (Li et al. 2009).

Feature Learning

The system first acquires the grammar with Li et al.’s algo-
rithm. After that, our learning system tries to identify an
intermediate symbol in one of the rules as the target feature.
This process is done in three steps.

The system first builds the parse trees for all of the obser-
vation sequences based on the acquired rules. For instance,
in algebra, suppose we have acquired the PCFG shown in
Table 1. The associated parse tree of −3x is shown at the
left side of Figure 1. Next, for each sequence, the learner tra-
verses the parse tree to identify the intermediate symbol as-
sociated with the feature subsequence, and the rule to which
the intermediate symbol belongs. In the case of our exam-
ple, the intermediate symbol is SignedNumber, and the
rule is Expression → 1.0, SignedNumber V ariable.
For some of the sequences, the feature may not be gen-
erated by a single symbol, which usually happens when
the acquired PCFG is not in the right structure. In
this case, the system will ignore the current sequence.
Last, the system records the frequency of each sym-
bol rule pair, and picks the pair that matches the most
training records as the learned feature. For instance, if
most of the input records match with SignedNumber in
Expression → 1.0, SignedNumber V ariable, it will
be considered as the target feature pattern.

After learning the feature, when a new problem comes,
the system will first build the parse tree of the new problem
based on the acquired grammar. Then, the system extracts
the subsequence associated with the feature symbol from the
parse tree, and returns it as the feature.

Transfer Learning Using Prior Knowledge
Previous research has shown that prior knowledge affects
the effectiveness of later learning tasks (Booth et al. 2007;
Matsuda et al. 2009). Learners that actively acquire high-
level knowledge (e.g. non-primitive symbols) maintain
stronger prior knowledge than others who do not. There-
fore, we designed a learning mechanism that transfers the
acquired grammar and the application frequencies of the
rules from previous tasks to future tasks to accelerate the
learning process.

More specifically, during the acquisition of grammar in
previous tasks, the learner records the acquired grammar and
the number of times each grammar rule appeared in a parse
tree. When a new learning task comes in, the learning algo-
rithm first uses the known grammar to build the most prob-
able parse trees for each new record in a bottom up fashion,
until there is no rule that can further merge two parse trees
to a single tree. Then, the system switches to the original
greedy structure hypothesizer and acquires new rules based
on the partially parsed sequences. In the next phase, Viterbi
training, the learning algorithm counts the applied rule fre-
quency not only with the training problems, but also with
the recorded frequency from previous tasks.

Note that it is possible that after acquiring new rules with
new examples, during the Viterbi training, the parse trees for
the training examples in the previous tasks have changed,
and the recorded frequencies are no longer true. However,
as long as the acquired grammar is true for previous tasks,
we believe the frequency numbers still serve as a good in-
dication of the probabilities associated with grammar rules.
Moreover, by recording the frequencies instead of rebuilding
the parse trees for all previous training examples in each cy-
cle, we are able to save both space and time for learning. It is
also cognitively plausible since people usually do not have
a large memory capacity to remember all past experiences
during learning.

Effective Learning using a Semantic Non-Terminal
Constraint
In spite of stronger prior knowledge, we also believe that
better learning mechanism could yield faster learning expe-
rience. Hence, we further extended our learning mechanism
to make use of a “semantic non-terminal constraint” embed-
ded in training data during learning.

In the original learning algorithm, during the process of
grammar induction, the learner acquires whatever grammar
that could generate the training traces without differentiat-
ing the subsequence associated with the feature from other
subsequences in the training example. It is possible that two
grammars can generate the same set of traces, but only one
has the feature symbol embedded in it. But we cannot be
sure that the original learner would learn the right one. Forc-
ing all the feature subsequences to correspond to some target
feature provides us with a constraint on the grammar, which
is, there should be a non-terminal symbol associated with
the target feature.

Therefore, we extended the learner to use this semantic
non-terminal constraint. Before learning the grammar rule
for the whole sequence, the learner first extracts all the fea-
ture subsequences from training problems, and acquires a
feature grammar for it. Then, the learning mechanism re-



Table 2: Method summary

2-by-2 learners: L00,no transfer, no non-terminal constraint
L01, no transfer, with non-terminal constraint
L10, transfer, no non-terminal constraint
L11, transfer, with non-terminal constraint

Three tasks: T1, learn signed number
T2, learn to find coefficient from expression
T3, learn to find constant from equation

Three curricula: T1→ T2
T2→ T3
T1→ T2→ T3

Number of training condition: 10
Training size in all but last tasks: 10
Training size in the last task: 1, 2, 3, 4, 5
Testing size: 100

places all the feature subsequences in the training records
with a semantic terminal symbol, and learns a new gram-
mar for the updated sequences. Finally, two grammars are
combined, and the semantic terminal is relabeled as a non-
terminal symbol and associated with the start symbol for the
feature grammar

Preliminary Results
In order to understand the behavior of the proposed model,
we carried out a preliminary experiment before the integra-
tion. The method we used is shown in Table 2. There were 2-
by-2 (4) alternative versions of the proposed learning model
in the study. We designed three curricula using three tasks,
where knowledge learned from previous tasks is helpful in
accomplishing later tasks. There were also 10 training se-
quences to control for a difference in training problems. In
all but the last task, each learner was given 10 training prob-
lems following the curriculum. For the last task, each learner
was given one to five training records. The learning gain was
measured by the accuracy of the recognized features for the
last task under each training condition.

We also compared the type of errors made by the model
with the real student errors. We divided student responses
from a study of 71 high school students used Carnegie
Learning Algebra I Tutor into four types, 1) do not know,
where a student does not know how to proceed, 2) correct,
where a student gives the correct answer, 3) common er-
ror bug, where a student considers Integer as the coeffi-
cient of −Integer x, 4) others, all other responses. During
testing, we computed the percentage of each response type
in both real student data and learner generated results, and
compared whether the pattern of learner generated results fit
to that of real student data qualitatively.

Impact of Deep Feature Learning on the Rate of
Learning: As shown in Figure 2(a), with curriculum one,
all four learners acquired better knowledge with more train-
ing examples. Both learners with transfer learning, L11 and
L10, have the steepest learning curve. The learner with bet-
ter learning strategy, L01’s learning curve is not as steep
as L10 and L11. This suggests that with transfer learning,
learners are able to acquire knowledge quicker than those
without transfer learning. L00’s learning curve is the least
steep one. Comparing the base learner, L00, and the learner

with non-terminal constraint, L01, we can see that a bet-
ter learning strategy yields a steeper learning curve. Simi-
lar results were also observed with curriculum two and cur-
riculum three. We can also see that in all three curricula,
the transfer learner, L10, always outperforms the learner
with semantic non-terminal constraint, L01. This suggests
that prior knowledge is more effective in accelerating future
learning than better learning strategies.

Impact of Deep Learning on Error Matching: In real
student data, among all of the errors, the most common er-
ror made by students was dividing both sides by A instead
of −A. The error rate was 6.15%. Comparing the behav-
ior of the proposed models, we see no learners were able to
recognize any coefficient without any training data, which is
appropriate since students would not be able to answer any
questions before being taught. After being trained with one
to five problems, L00 generated the most common error in
testing. Besides that all other incorrect answers belong to
category “do not know”. All the other learners did not make
any mistakes on the test questions.

Integrating Deep Feature Learning into
SimStudent

In spite of the promising result, the above model operated as
a stand-alone module that was not part of an integrated sys-
tem, which limits the capability of the system. In this sec-
tion, we explore the challenges and opportunities in adapting
this mechanism into a larger system. In particular, we chose
SimStudent (Matsuda et al. 2009), a state-of-art machine
learning agent that acquires procedural knowledge from ex-
amples and through problem-solving experiences. This inte-
gration could potentially reduce the amount of prior knowl-
edge needed for SimStudent, and also enables us to carry
out more extensive experiment in understanding the model
behavior.

A Brief Review of SimStudent
Before discussing the integration, let’s briefly review Sim-
Student. SimStudent is a machine-learning agent that in-
ductively learns skills to solve problems from examples. It
is a realization of programming by demonstration (Lau and
Weld 1998) with an underlying technique of inductive logic



0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of training problems

S
c
o
re

 

 

L00

L01

L10

L11

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of training problems

S
c
o
re

 

 

L00

L01

L10

L11

(b)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number of training problems

S
c
o
re

 

 

L00

L01

L10

L11

(c)

Figure 2: Learning curves for four learners in curriculum (a) from task one to task two. (b) from task two to task three. (c) from
task one to task two to task three.

programming (Muggleton and de Raedt 1994). The ex-
amples can be given at once as demonstrated solutions (i.e.,
worked-out examples) or interactively as guided problem-
solving feedback from a tutor (i.e., tutored problem solving).
An example given to SimStudent shows a rule application.
Each example can be labeled according to the skill applied
(e.g., ”divide”) to reduce the cost of a search. The exam-
ple typically provides another piece of information, called
the focus of attention (FoA) showing where to pay attention
when the skill is applied. For example, to demonstrate to
“divide both sides of -3x=6 by -3”, the tutor may label the
step as “divide” and specify “-3x” and “6” (i.e., each side
of the equation) as FoA. When learning from demonstrated
solutions, SimStudent is engaged in passive learning. Each
step in the demonstrated worked-out examples serves as a
positive example for the specified skill application. At
the same time, it also serves as an /implicit/ negative ex-
ample for all other skills that have been demonstrated thus
far. When SimStudent is engaged in tutored problem solv-
ing, the tutor provides both positive and /explicit /negative
examples. Positive examples include not only demonstrated
solutions, but also generated steps that receive positive feed-
back from the tutor. Explicit negative examples are gener-
ated steps that receive negative feedback from the tutor.

Production Rules: SimStudent generates production
rules as a result of learning. Each production rule models
a single skill application, although a skill may be modeled
as a set of disjunctive rules. A production rule indicates
/when/ to apply a rule to what information found /where/ in
the interface and /how/ the problem state should be changed.
For example, the rule to “divide both sides of -3x=6 by -3”
would read “given a left-hand side (i.e., -3x) and a right-
hand side (6) of the equation (the where-part), when the left-
hand side is a variable term and the right-hand side is a con-
stant term (the when-part), then get the coefficient of term
on the left-hand side and divide both sides by the coefficient
(the how-part).” Accordingly, the production rule consists
of three major parts - (1) the WME-path (the where-part)
representing a hierarchical structure of the working mem-
ory elements that are realized in a problem given to solve,
(2) the feature test (the when-part) representing conditions
to apply the production rule, and (3) the operator sequence

(the how-part) representing actions to be taken.
Background Knowledge: To learn the WME-path cor-

rectly, SimStudent must be given hierarchical information
of the working memory elements. The hierarchy of WME
reflects strong domain knowledge such as “an equation has
left- and right-hand side.” Learning the feature test and the
operator sequence also requires “strong” domain knowledge
such as variable term, constant term, and coefficient as men-
tioned above. It has been empirically tested that the strength
of the background knowledge affects the rate and the accu-
racy of SimStudent’s learning (Matsuda et al. 2009). Es-
pecially, to model (human) students’ learning, especially to
model errors that students make, we need to provide “weak”,
more perceptually grounded background knowledge such as
perceiving “3” as a number before a variable, instead of a
coefficient. Since the “weak” background knowledge, by
definition, applies broader context, modeling SimStudent
with “weak” background knowledge also expands its gen-
erality. The proposed attempt to integrate the deep feature
learning to SimStudent is to model the process of learn-
ing “strong” domain knowledge from “weak” background
knowledge (and transfer) as well as to model more errors
that students make due to an inappropriate application of
such “weak” background knowledge.

Integrating Deep Feature Learning
As we can see from the above description, SimStudent re-
quires a set of strong (domain specific) background knowl-
edge as input to learn procedural knowledge to solve the
problems. The proposed model, on the other hand, only
needs weak knowledge such as what is an integer. 1 If
we could integrate this model into SimStudent, we would
be able to achieve a system that requires only weak prior
knowledge as input.

Integrating Learning Process into SimStudent: De-
spite the promising future, challenges remain. First, Sim-
Student learns knowledge by demonstration, and thus no
explicit labeling of deep features would be provided. One

1If given enough training examples, the proposed model may
not need any prior knowledge.



possible way of achieving the integration is asking the tu-
tor/teacher to circle the deep features during each step, and
label them with the name of each feature. This strategy, if
used under the learning by teaching situation, forces the tu-
tor to self-explain his/her behavior. This could potentially
improve the learning speed of the tutor.

Another possible choice is when there is no tutor provid-
ing the labeling information, SimStudent should be able to
identify the deep features in the problem as well as the labels
associated with them automatically, based on the demonstra-
tion steps. This is a harder but more interesting problem. To
do this, after each demonstration step, SimStudent tries to
match the input string with the current FoAs. If some part of
the string matches with any of the current FoAs, we consider
the partial string is potentially a deep feature associated with
that FoA. For example, for problem −3x = 6, the first input
message is divide −3. In this case, the current FoAs include
−3x and 6. Since −3 in divide − 3 matches with −3x, we
consider −3 as a candidate deep feature embedded in −3x.
Then, SimStudent is able to identify possible deep features
in the task. Nevertheless, this is not sufficient. There are
usually more than one type of deep features in the domain
(e.g. coefficient, constant). Hence, SimStudent should be
able to cluster deep features into several groups, each asso-
ciated with some specific deep feature. This could be done
by a clustering algorithm using demonstration signals such
as the name of the rule learned with that demonstration, the
name of the operator associated with the deep feature. Other
signals such as hint messages also provide assistant infor-
mation in labeling deep features.

Extending the Model to Support Noisy Input from
SimStudent: One potential risk the learning algorithm
might face in this case is that the proposed model assumes all
of the input records are correct records, which is no longer
true. Since SimStudent is now automatically generating in-
put records based on demonstration steps, it is likely that
some of the generated records are incorrect. Although the
proposed model is robust to some extent due to its statistical
nature, the proposed model might still suffer due to the noise
in the input records. In response to this, we plan to further
extend the proposed model to support negative feedback,
where the model will not only try to acquire the grammar
that is most likely to generate the positive records, but also is
most unlikely to generate the negative records. The source of
the negative feedback comes from a wrong application of a
production rule. More specifically, in the original model, the
greedy structure hypothesizer always stops whenever there
is at least one parse tree for each training record. This greedy
strategy can get the learning algorithm stuck at a local op-
timum point. When there is a negative feedback available
on the current grammar, instead of just considering the most
probable parse tree as the parsing structure of the input mes-
sage, the learning model should also consider the second or
third most probable parse tree as the candidate parsing of the
input record. This process continues until the learning algo-
rithm finds a grammar that is consistent with both the pos-
itive and negative training records. In short, with the deep
feature acquisition strategy described above, the extended
SimStudent does not require more demonstration informa-
tion than before, but could potentially reduce the amount of
prior knowledge needed.

Extending SimStudent to Use the Acquired Knowl-

edge: After the grammar has been learned, how to enable
SimStudent to use this knowledge to assist its learning pro-
cess as well as future execution also present challenges to
integration. To this end, we propose to extend the WME
path structure in the LHS of the production rule. Instead of
always having a cell as the leaf node of a WME path, we
further extend the original WME path to include the most
probable parse tree of the cell based on the acquired gram-
mar. Also, not only the cells are considered as FoAs, the in-
termediate symbols and terminal symbols(subcells) in their
parse trees are also set to be current FoAs. For instance,
−3 and x would also be added to the FoAs. Then, Sim-
Student would be able to acquire knowledge based on the
extended WME path. In the −3x = 6 example, a produc-
tion rule learned will not need to first extract the coefficient
from −3x. Instead, it will only need to divide both sides
with −3. If there is no prior knowledge given on extracting
coefficient, the original SimStudent might fail in learning
the right production rule, whereas the extended SimStudent
could still acquire the production rule based on the extended
WME path. The facts associated with the subcells will also
be generated and updated in each demonstration step. After
the rule is learned, whenever the rule is satisfied, SimStu-
dent would apply the rule. A failure on the rule application
also serves as a negative feedback discussed in the previous
paragraph. With the integration just described, the extended
SimStudent should be able to yield faster learning based on
prior learning, and to acquire procedural knowledge given
only weak prior knowledge.

Future Studies after Integration
After integration, both the learning capability of the pro-
posed model and the extensiveness of the studies we could
carry out would be improved. We first tested the learning
capability of the integrated model with a simple example,
where the computational model was first trained on the co-
efficient task. After the model has learned the correct gram-
mar of coefficient, we extended WME path to support the
acquired grammar, and trained the extended SimStudent on
solving equations of the form, Integer x = Integer, and
then tested on a problem 3x = 6. The extended SimStu-
dent successfully acquired the production rules, and solved
the testing problem without asking for help. The acquired
production rule for dividing both sides had only one weak
operator, whereas the original SimStudent required a strong
operator. This preliminary result suggests that the extended
SimStudent may be able to acquire new domain knowledge
without being given the strong background knowledge cur-
rently needed by SimStudent.

We plan to carry out more thorough studies to get a better
understanding of the grammar learning extension of SimStu-
dent. More specifically, we would like to answer two ques-
tions, 1) How well does SimStudent behavior match real stu-
dent behavior? 2) If the proposed model is a good simulation
of real students, what insights could we gain from it? To ad-
dress the first question, we will use real student data gathered
from 71 high school students used Carnegie Learning Alge-
bra I Tutor. Based on the data, we will divide student into
slow and fast learners, and record their learning curves. We
will also implement multiple versions of the synthetic stu-
dents with different features embedded. Then, we will train
the synthetic students with the same set of problems used



on real students, and record the learning curves as well as
the errors made over time. We will then match the recorded
behavior of the synthetic students with the real student data,
and check which version of the model corresponds to the
fast student learners, whereas which version of the model
behaves similar to the slow student learners. If the model
matches appropriately with real student data, it suggests that
the proposed model is a good model of real students.

As for the second question, if the extended SimStudent is
a good model, we would be able to carry out controlled sim-
ulation study with the extended SimStudent in understand-
ing what causes the difference of real students based on the
model variations. We will compare and contrast the differ-
ent features used in the fast synthetic students and the slow
synthetic students. With this simulation study, we hope to
isolate factors that cause some students to learn faster than
others.

Related Work
The objective of this paper is to propose a computational
model that demonstrates how deep feature acquisition could
yield faster future learning. While there has been consider-
able amount of work on accelerated future learning (Brans-
ford and Schwartz 1999; Hausmann and VanLehn 2007;
Pavlik et al. 2008), these projects have focused on demon-
strating how instructional treatments lead to accelerated fu-
ture learning. To the best of our knowledge, there has been
no research on modeling how accelerated future learning is
generated.

More generally, there has been considerable work on
learner modeling. Previous research on competitive chunk-
ing (Servan-schreiber and Anderson 1990) models how
grammatical knowledge of chunks were acquired, but was
not focused on accelerated future learning. Orbán et
al. (Orbán et al. ) investigated a chunking mechanism
in humans with a visual pattern-learning paradigm, and
developed a Bayesian chunk learner. Research on auto-
matic bug library construction (Suarez and Sison 2008;
Baffes and Mooney 1996) uses machine learning techniques
to capture student errors. But again, these projects did not
attempt to model faster future learning.

Conclusion
In this paper, we presented a computational model of student
learning that acquires deep features to assist future learning,
and proposed a plan for integrating this model into a ma-
chine learning agent. We provided a preliminary evaluation
of the proposed model. The preliminary results showed how
both stronger prior knowledge and a better learning strategy
in deep feature acquisition can assist future learning. Results
also indicated that stronger prior knowledge produces faster
learning outcomes compared with a better learning strategy.
Some model variations were able to generate human-like er-
rors, while others learn more quickly than students do. Last,
we discussed the set of more extensive studies we could
carry out once the integration is done.

References
Paul Baffes and Raymond Mooney. Refinement-based stu-
dent modeling and automated bug library construction. J.
Artif. Intell. Educ., 7(1):75–116, 1996.

Julie L. Booth, Kenneth R. Koedinger, and Robert S.
Siegler. The effect of prior conceptual knowledge on pro-
cedural performance and learning in algebra. In Poster pre-
sented at the 29th annual meeting of the Cognitive Science
Society, Nashville, TN, 2007.
John D. Bransford and Daniel L. Schwartz. Rethinking
transfer: A simple proposal with multiple implications. Re-
view of Research in Education, 24:61–100, 1999.
Michelene T. H. Chi, Paul J. Feltovich, and Robert Glaser.
Categorization and representation of physics problems by
experts and novices. Cognitive Science, 5(2):121–152,
June 1981.
Robert G.M. Hausmann and Kurt VanLehn. Explaining
self-explaining: A contrast between content and genera-
tion. Artificial intelligence in education: Building technol-
ogy rich learning contexts that work, 158:417–424, 2007.
Tessa Lau and Daniel S. Weld. Programming by demon-
stration: An inductive learning formulation. In Proceed-
ings of the 1999 international conference on intelligence
user interfaces, pages 145–152, 1998.
Nan Li, Subbarao Kambhampati, and Sungwook Yoon.
Learning probabilistic hierarchical task networks to cap-
ture user preferences. In Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence,
Pasadena, CA, 2009.
Noboru Matsuda, Andrew Lee, William W. Cohen, and
Kenneth R. Koedinger. A computational model of how
learner errors arise from weak prior knowledge. In Pro-
ceedings of Conference of the Cognitive Science Society,
2009.
Stephen Muggleton and Luc de Raedt. Inductive logic pro-
gramming: Theory and methods. Journal of Logic Pro-
gramming, 19:629–679, 1994.
Gergö Orbán, József Fisher, Richard N. Alin, and Máté
Lengye. Baysian learning of visual chunks by human ob-
servers. In Proceedings of the National Academy of Sci-
ences, 105, pages 2745–2750.
Philip Pavlik, Jr., Thomas Bolster, Sue-Mei Wu, Ken
Koedinger, and Brian Macwhinney. Using optimally se-
lected drill practice to train basic facts. In ITS ’08: Pro-
ceedings of the 9th international conference on Intelli-
gent Tutoring Systems, pages 593–602, Berlin, Heidelberg,
2008. Springer-Verlag.
Emile Servan-schreiber and John R. Anderson. Learning
artificial grammars with competitive chunking. Journal of
Experimental Psychology: Learning, Memory, and Cogni-
tion, 16:592–608, 1990.
Merlin Suarez and Raymund Sison. Automatic construc-
tion of a bug library for object-oriented novice java pro-
grammer errors. In ITS ’08: Proceedings of the 9th inter-
national conference on Intelligent Tutoring Systems, pages
184–193, Berlin, Heidelberg, 2008. Springer-Verlag.


